Зернограничные сегрегации как причина развития трещин и снижения ресурса материалов для низкотемпературной техники

А.В. Васильев, С.Б. Ермаков, В.В. Каргинова

Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий

В статье приводятся результаты исследования причин задержанного разрушения высокопрочных закаливающихся сталей для низкотемпературной техники. В результате исследований была подтверждена взаимосвязь развития задержанного разрушения закаленных сталей и возникающих, в ходе высокотемпературной термообработки, сегрегаций примесных атомов. Показана положительная роль молибдена в повышении трещиностройкости закаленных сталей. Определен оптимальный интервал легирования молибденом сталей типа 30Х2НЗМ, 30Х2НМ, предназначенных для изготовления низкотемпературного оборудования.

Ключевые слова: стали, низкие температуры, молибден.

Проблема ресурса материалов низкотемпературной техники особо остро встала в конце XX начале XX1века, когда естественное старение основных фондов привело к резкому росту числа ремонтов оборудования, замещению менее прочных материалов более высокоуглеродистыми, более прочными сталями. Постепенно изменяются режимы термической обработки деталей, на место традиционной нормализации приходит закалка и отпуск деталей. Интенсификация режимов закалки в промышленности решается, в первую очередь, путем повышения скорости охлаждения термически обрабатываемых деталей, применением новых более жестких закалочных сред. Однако повышение скорости охлаждения в ряде случаев может привести к развитию в металле закалочных трещин, закономерности развития которых подробно рассмотрены в работах [1—3 и др.]. Так, в работе [3] доказано, что закалочные и аналогичные им по механизму возникновения холодные сварочные трещины, развиваются в зернограничном пространстве сталей и могут трактоваться как частный случай разрушения при релаксации напряжений.

В связи с этим такие характеристики трещиностойкости как K_{1c} , определяемые по ГОСТ 25.506-85 (определение вязкости разрушения при статическом нагружении), не отражают закономерностей задержанного разрушения при развитии закалочных и холодных сварочных трещин. В работах [3—5] было показано, что в условиях испытаний с малой длительностью, т.е. высокой скоростью нагружения, проводимых в соответствии с ГОСТ 25.506-85 реализуется внутризеренный механизм разрушения. Длительные нагружения, имитирующие

процессы развития закалочных трещин, при ползучести или в условиях релаксации напряжений приводят к накоплению повреждений по границам зерен и, как следствие, к межзеренному характеру разрушения со значительно более низкими значениями вязкости разрушения (K_{1rth}), которые по данным [3] могут быть в пять и более раз ниже значений K_{1c} , определяемых по стандартной методике вязкости разрушения. В работе для определения K_{1rth} была использована методика, описанная в [4].

При исследовании пороговых значений вязкости разрушения были использованы призматические образцы 10x11x60 мм с инициированной усталостной трещиной — образцы 15 типа по ГОСТ 9454-78. Испытания проводили в условиях поддержания постоянного во времени прогиба образца в свежезакаленном состоянии. Начало медленного докритического роста трещины в процессе длительного нагружения в течение 8—20 часов регистрировали методом разности электрических потенциалов. По результатам испытаний были определены минимальные значения вязкости разрушения, которые принимали за пороговые значения K_{1rth} . Ниже порогового значения вязкости разрушения рост трещины не наблюдался.

В работе было проанализировано влияние на трещиностойкость сталей 30X2H3M, 30X2HM фосфора, а также влияние олова, фосфора и молибдена на трещиностойкость стали 30XM. Химические составы исследованных сталей, выплавленных в лабораторных 5 килограммовых индукционных печах с основной футеровкой, приведены в табл. 1.

Таблица 1. Химические составы исследованных сталей.

плав	Химический состав, масс.%												
ка	C	Si	Mn	Cr	Ni	Mo	Al	S	P	Sn			
1	0,29	0,28	0,47	1,34	3,25	0,29	0,011	0,027	0,009	0,008			
2	0,29	0,23	0,51	1,56	3,31	0,29	0,007	0,023	0,035	0,007			
3	0,28	0,22	0,47	1,34	3,27	0,29	0,009	0,024	0,056	0,008			
4	0,30	0,23	0,47	1,21	1,14	0,31	0,009	0,023	0,016	0,004			
5	0,28	0,26	0,49	1,30	1,20	0,31	0,008	0,021	0,019	0,006			
6	0,31	0,24	0,51	1,47	1,12	0,30	0,007	0,024	0,021	0,007			
7	0,29	0,26	0,50	1,26	3,17	0,29	0,009	0,021	0,014	0,006			
8	0,30	0,21	0,47	1,24	3,25	0,31	0,011	0,023	0,015	0,007			
9	0,26	0,30	0,48	1,45	3,27	0,31	0,012	0,024	0,019	0,006			
10	0,32	0,25	0,51	1,37	3,16	0,29	0,009	0,023	0020	0,005			
11	0,28	0,27	0,48	1,30	3,29	0,29	0,009	0,024	0,021	0,004			
12	0,26	0,28	0,47	1,60	0,42	0,29	0,009	0,016	0,016	0,009			
13	0,25	0,26	0,46	1,56	0,34	0,60	0,009	0,014	0,016	0,007			
14	0,25	0,20	0,46	1,60	0,38	0,98	0,008	0,014	0,016	0,007			
15	0,25	0,26	0,47	1,55	0,33	1,14	0,009	0,015	0,016	0,007			

16	0,25	0,27	0,47	0,21	0,11	_	0,007	0,016	0,012	0,009
17	0,25	0,27	0,47	1,60	0.42	_	0,007	0,016	0.014	0,007
18	0,24	0,31	0,41	1,51	3,52	_	0,008	0,021	0,023	сл.
19	0,30	0,23	0,49	1,21	0,11	0,16	0,009	0,015	0,014	0,006
20	0,30	0,23	0,48	0,10	0,08	_	0,009	0,016	0,015	0,007

По данным испытаний образцов каждой из плавок были построены временные зависимости вязкости разрушения и определены пороговые значения K_{1rth} , отвечающие началу роста трещин в условиях релаксации напряжений (рис. 1.).

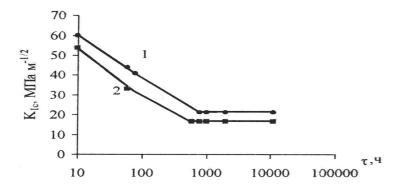


Рис. 1. Временные зависимости вязкости разрушения для опытных плавок: 1 — плавка 12, 2 — плавка 14.

На рис. 2. приведены результаты испытаний трещиностойкости опытных плавок и влияние на эти свойства содержания в них фосфора. Установлено, что во всех случаях фосфор снижает пороговые значения трещиностойкости сталей. Анализ изломов образцов, разрушенных в условиях релаксации напряжений, подтвердил предположение о том, что трещина развивается по границам наследственных — аустенитных зерен стали.

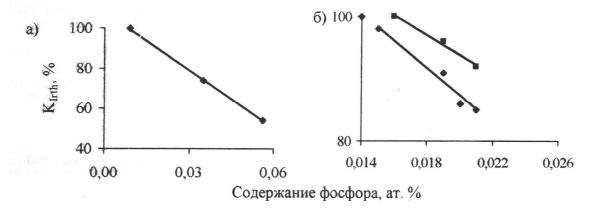


Рис. 2. Влияние содержания фосфора на снижение пороговых значений вязкости разрушения: а — плавки 1—3; б — кривая 1 — плавки 4—6; кривая 2 — плавки 7—11.

Поверхности изломов образцов с целью выяснения распределения основных легирующих и примесных элементов были изучены методами Ожеэмиссионной спектроскопии и ЭСМА. Данные результатов контроля приведены в табл. 2. Было установлено, что в поверхностных слоях изломах (границах аустенитных зерен сталей) содержится повышенное содержание примесных элементов и, в первую очередь, фосфора.

Таблица 2. Содержание фосфора в границах аустенитных зерен опытных плавок после закалки с 850 0 C в течение 0,5 часа.

метод	Н	Номер плавки и содержание фосфора в границе зерна, масс. %											
	1	2	3	4	5	6	7	8	9	10	11	16	
Оже	0,67	0,91	1,29	0,81	0,87	0,79	0,86	0,90	0,88	0,79	0,83	1,06	
ЭСМА	0,09	0,32	0,43	0,11	0,19	0,18	0,14	0,12	0,12	0,13	0,16	0,24	

Форма концентрационного распределения фосфорной сегрегации после незначительных (0,5 часа) выдержек при нагревах под закалку с 850 °C позволяет отнести ее к неравновесной — растянутой от границы вглубь зерна, то есть в легированных сталях развиваются сегрегации того же типа, что и в опытных Fe-C сплавах (рис. 3). Однако следует отметить, что концентрация фосфора в границах зерен легированных сталей оказывается значительно ниже, чем у соответствующих им по содержанию углерода нелегированных сталей (плавка 16 табл. 2).



Рис. 3. Распределение атомов фосфора от границы вглубь тела зерна: 1 — плавка 1; 2 — плавка 3; 3 — плавка — 15.

Полученные результаты исследований позволяют сделать вывод о том, что именно зернограничные сегрегации примесных элементов ответственны за снижение пороговых значений трещиностойкости закаленных сталей, и указывают на единство сегрегационных механизмов, действующих в опытных Fe-C, в промышленных углеродистых сталях и в легированных сталях. Это позволяет

говорить о работоспособности и возможности распространения модели развития зернограничных сегрегаций на легированные стали перлитного класса. Роль легирующих элементов в случае нагревов Fe-C сплавов при температурах выше A_{c3} , вероятно, сводится к замедлению диффузионных процессов перераспределения примесных атомов из тела зерна в его границы.

При увеличении времени нагрева под закалку наблюдается повышение концентрации фосфора в границах аустенитных зерен и постепенное снижение величины пороговых значений вязкости разрушения (табл. 3). При этом форма зернограничной сегрегации фосфора и его концентрация в границах зерен легированных и нелегированной сталей постепенно сближаются.

Таблица 3. Содержание фосфора в границах зерен и пороговые значения вязкости разрушения опытных плавок в зависимости от времени выдержки под закалку с 850°C.

ппор	Содержание фосфора, масс. %							K_{1rth} МПа \sqrt{M}					
плав- ка	Время выдержки, час.							Время выдержки, час.					
Ka	0,5	1	2	10	25	100	0,5	1	2	10	25	100	
1	0,67	0,78	0,85	0,98	1,04	1,17	17,3	16,8	15,0	12,4	11,6	10,9	
2	0,91	0,99	1,14	1,24	1,33	1,45	13,8	13,5	10,9	10,0	9,3	8,8	
3	1,29	1,40	1,52	1,71	1,87	1,99	10,1	9,8	7,5	6,9	5,7	5,0	

Как видно из приведенных ранее результатов исследований легирующий комплекс сталей влияет на величину зернограничных сегрегаций примесных атомов замещения, способен изменять форму сегрегации — переводя ее в более неравновесное состояние. Это, в первую очередь, касается элементов, имеющих высокую энергию взаимодействия с фосфором, таких как (по мере увеличения энергии взаимодействия элемента с фосфором): хром, ванадий, вольфрам, молибден, титан и цирконий.

Среди этих элементов наибольший интерес представляет молибден — как элемент, широко используемый при легировании сталей для нейтрализации вредного воздействия примесей замещения. Для уточнения его роли в формировании зернограничных сегрегаций примесных элементов были проанализированы изломы опытных плавок 12—15, содержание молибдена в которых изменялось от 0.29 до 1,14 масс. %, а также нелегированная сталь (плавка 16) и сталь легированная только хромом (плавка 17).

В табл. 4 приведены результаты исследования влияния молибдена на пороговые значения вязкости разрушения и концентрацию в границах зерен и приграничных областях твердого раствора примесей замещения (на примере фосфора и олова). Установлено, что в закаленном состоянии (закалка с 850°С — выдержка 0,5 ч) пороговые значения вязкости разрушения возрастают, а содержание примесей в границах аустенитных зерен снижается эквидистантно повышению содержания в стали молибдена до 0,6 масс. %. При дальнейшем повышении его концентрации до 0,98 масс. % положительное влияние молибдена

ослабевает, а при концентрации 1,14 масс. % значения трещиностойкости оказываются даже ниже, чем у менее легированных молибденом сталей.

Таблица 4. Пороговые значения вязкости разрушения и концентрация примесных атомов в границах зерен опытных плавок.

ндор	Содержание в			Co	держа	I/				
плав-	Сталі	и, масс	. %	Оже — 20 Å			ЭСМ	A — 1	$K_{1rth} \ M\Pi a \sqrt{M}$	
ка	Mo	P	Sn	Mo	P	Sn	Mo	P	Sn	IVIIIa√M
16	_	0,012	0,009	_	1,06	0,35	_	0,19	0,115	14,0
17	_	0,014	0,009	_	0.97	0,31	_	0,14	0,098	15,2
12	0,29	0,016	0,009	0,37	0,78	0,17	0,31	0,07	0,047	16,5
13	0,60	0,016	0,009	0,57	0,47	0,11	0,65	0,04	0,021	20,1
14	0,98	0,016	0,007	0,79	0,42	0,10	0,81	0,04	0,018	21,0
15	1,14	0,016	0,007	0,81	0.56	0,14	0,83	0,07	0,023	20,7

Обращает на себя внимание изменение формы концентрационной кривой распределения атомов примесных элементов от поверхности вглубь зерна, полученная методом ЭСМА (толщина анализируемого слоя — 1000 Å) — рис. 4. В случае безмолибденовых (плавки 16 и 17) и маломолибденовых (плавка 12) сталей наблюдается снижение концентрации примесных элементов — (на рис. 4 — фосфора) по мере удаления от границы зерна (рис. 4.а—в), в том случае, когда содержание молибдена достигает 0,6 масс. % (рис. 4.г) и 0,98 масс. % — наблюдаются области повышенной концентрации фосфора в глубине зерна, что вероятно связано с торможением этого элемента атомами, находящегося в твердом растворе молибдена.

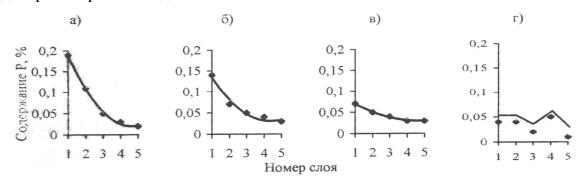


Рис.4. Среднее содержание атомов фосфора в границах зерен и приграничных областях твердого раствора опытных сталей: а — плавка 16; б — плавка 17; в — плавка 12; г — плавка 13. Глубина одного анализируемого — 1000 Å.

Причины снижения трещиностойкости стали при повышении концентрации молибдена до 1,14 масс % в работе специально не выяснялись, однако можно предположить, что вероятно, в процессе закалки не успевает пройти процесс растворения специальных карбидов молибдена и его содержание в твердом растворе стали понижается.

Введение в нелегированную плавку 16 хрома (плавка 17) не изменяют вида кривых (рис. 4. а, б). Таким образом, положительная роль хрома в вопросе торможения развития зернограничных сегрегаций примесных элементов сводится только к понижению скорости диффузии примесных атомов в хромсодержащем твердом растворе, что подтверждается выводами работ [1,6]. Каких либо изменений формы концентрационного распределения атомов примесей, на которые указывают работы [7,8], обнаружено не было.

С целью уточнения роли молибдена на пороговые значения трещиностойкости стали, в работе были выполнены расчеты энергии взаимодействия атомов примеси с границами аустенитных зерен (табл. 5). В табл. 5 для удобства сопоставления полученных результатов с результатами работ [1,8] энергия взаимодействия примесных атомов с границами аустенитных зерен приводится в пересчете на 1 моль — в виде величины ΔG_i .

Таблица 5. Влияние молибдена на энергию взаимодействия атомов примесных и легирующих элементов с границей аустенитного зерна».

плавка	ΔG_{i} . примесного атома, КДж\моль											
	P	Sn	Sb	Bi	As	Mo	Si					
12	14,38	20,24	17,46	12,96	22,11	8,73	37,14					
14	5,07	8,97	10,71	10,53	14,23	8,97	17,62					
16	18,43	31,14	19,16	16,11	27,21	— -	39,12					

Приведенные в табл. 5 данные показали хорошую сходимость с подобными расчетами, выполненными другими авторами, в частности [1,9 и др.]. На основании выполненных расчетов, можно сделать следующее предположение. Введение в сталь молибдена, имеющего высокую энергию взаимодействия с примесными атомами, создает дополнительные центры «притяжения» для атомов примесей, что приводит к снижению их концентрации в границах зерен.

Таким образом, проведенными исследованиями была подтверждена взаимосвязь развития задержанного разрушения закаленных сталей и возникающих, в ходе высокотемпературной (выше A_{c3}) термообработки, сегрегаций примесных атомов. Установлено, что молибден наиболее эффективно препятствует развитию этих сегрегаций в диапазоне легирования до 0,6 %. При содержании молибдена 0,6 % и более было отмечено не только снижение скорости диффузии атомов примеси, оцениваемой по содержанию элемента в границах зерна, но и изменение вида концентрационной кривой — появление на ней флуктуационных всплесков концентрации примесей в глубине зерна. Повышение концентрации молибдена до 0,98 масс. % незначительно повышает трещиностой-кость стали, а дальнейшее повышение его содержания даже снижает пороговые значения трещиностойкости.

Список литературы

- 1. Солнцев Ю.П., Ермаков Б.С. Ресурс материалов низкотемпературных конструкций СПб, ХИМИЗДАТ, 2006, 512 с
- 2. Ермаков Б.С., Ланин А.А., Колчин Г.Г. Особенности зернограничного разрушения закаленных Ст-Ni-Mo сталей. Известия АН СССР. Металлы, 1988, 1. с. 107-111
- 3. РУ 49. Массовый метод оценки трещиностойкости материалов и сварных соединений энергооборудования. Л., НПО ЦКТИ, 1982. 14 с.
- 4. Солнцев Ю.П., Вологжанина С.А., Ермакова Т.В. Анализ химического состава изломов закаленной хладостойкой стали в условиях замедленного разрушения. Сб. трудов VI научно-технической конференции «Прочность материалов и конструкций при низких температурах». СПбГУНиПТ, СПб, 2000. с. 36-39.
- 5. Чижик А.А., Ланин А.А. Новый инженерный метод оценки склонности к образованию и развитию технологических трещин при сварке и термической обработке. Л., ЛДНТП, 1987. 22 с.
- 6. Zhou Y. –X., Fu S.-C., McMahon C.J. Observation of the effect of temperature and crystallographic orientation on surface segregation in Fe-Si-Sn-C alloy. Met. Trans., 1981, v. A12, 6. p. 959-964.
- 7. Guttmann M. The link between equilibrium segregation and precipitation in ternary solutions exhibiting temper embrittlement. Metal Sci., 1976, 10. p. 337-341.
- 8. Guttmann M. Equilibrium segregation in a ternary solution: f model for temperembrittlement. Surface, Sci. 1975, V. 53. P. 213-227.